Refine Your Search

Topic

Author

Search Results

Technical Paper

Piston Temperature Measurement by Use of Thermographic Phosphors and Thermocouples in a Heavy-Duty Diesel Engine Run Under Partly Premixed Conditions

2005-04-11
2005-01-1646
Piston temperature experiments were conducted in a single-cylinder heavy-duty Diesel research engine, based on the Volvo Powertrain D12C engine both by use of optical temperature sensitive phosphor and of thermocouples mounted on the piston surface. In the former case, a thin coating of a suitable thermographic phosphor was applied to the areas on the piston surface to be investigated. The optical measurements of piston temperatures made involved use of an optical window and of an endoscope. The possibility of using optical fibres into guide light in and out of the engine was also investigated. Results of the optical and of the thermocouple measurements were compared and were also related to more global data with the aim of exploring the use of thermographic phosphors for piston- temperature measurements in Diesel engines. Thermographic phosphors thermometry was found to represent an alternative to the thermocouple method since it easily can be applied to various piston geometries.
Technical Paper

Ion Current Sensing in an Optical HCCI Engine with Negative Valve Overlap

2007-01-23
2007-01-0009
Ion current sensors have high potential utility for obtaining feedback signals directly from the combustion chamber in internal combustion engines. This paper describes experiments performed in a single-cylinder optical engine operated in HCCI mode with negative valve overlap to explore this potential. A high-speed CCD camera was used to visualize the combustion progress in the cylinder, and the photographs obtained were compared with the ion current signals. The optical data indicate that the ions responsible for the chemiluminescence from the HCCI combustion have to be in contact with the sensing electrode for an ion current to start flowing through the measurement circuit. This also means that there will be an offset between the time at which 50% of the fuel mass has burned and 50% of the ion current peak value is reached, which is readily explained by the results presented in the paper.
Journal Article

Investigation of Homogeneous Lean SI Combustion in High Load Operating Conditions

2020-04-14
2020-01-0959
Homogeneous lean combustion (HLC) can be utilized to substantially improve spark ignited (SI) internal combustion engine efficiency. Higher efficiency is vital to enable clean, efficient and affordable propulsion for the next generation light duty vehicles. More research is needed to ensure robustness, fuel efficiency/NOx trade-off and utilization of HLC. Utilization can be improved by expanding the HLC operating window to higher engine torque domains which increases impact on real driving. The authors have earlier assessed boosted HLC operation in a downsized two-litre engine, but it was found that HLC operation could not be achieved above 15 bar NMEP due to instability and knocking combustion. The observation led to the conclusion that there exists a lean load limit. Therefore, further experiments have been conducted in a single cylinder research DISI engine to increase understanding of high load lean operation.
Journal Article

Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane Ratings

2020-04-14
2020-01-0551
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables.
Journal Article

Optimization and Evaluation of a Low Temperature Waste Heat Recovery System for a Heavy Duty Engine over a Transient Cycle

2020-09-15
2020-01-2033
Powertrain efficiency is a critical factor in lowering fuel consumption and reducing the emission of greenhouse gases for an internal combustion engine. One method to increase the powertrain efficiency is to recover some of the wasted heat from the engine using a waste heat recovery system e.g. an organic Rankine cycle. Most waste heat recovery systems in use today for combustion engines use the waste heat from the exhaust gases due to the high temperatures and hence, high energy quality. However, the coolant represents a major source of waste heat in the engine that is mostly overlooked due to its lower temperature. This paper studies the potential of using elevated coolant temperatures in internal combustion engines to improve the viability of low temperature waste heat recovery.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
Technical Paper

The Effect of Elliptical Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine

2000-03-06
2000-01-1251
A serie of experiments were carried out to compare the combustion and emissions characteristics of a diesel engine using non-circular (elliptical) and circular shaped fuel injector nozzle holes. Elliptic nozzle holes have the potential to increase air entrainment into the spray, which could lead to decreased emissions from diesel combustion. Previous work [6,7] has shown some interesting results in a passenger car diesel engine and also in a single cylinder engine with optical access. The idea is based on results from investigations of gas jets, where the air entrainment for elliptical jets was increased substantially compared to circular jets. The present series of experiments were carried out to further investigate these effects. The non-circular holes, which were made with an aspect ratio of close to 2:1, have a similar flow rate as the conventional circular holes. Two different angles of the elliptical major axis to the injector centerline were used.
Technical Paper

The Effect of Knock on the Heat Transfer in an SI Engine: Thermal Boundary Layer Investigation using CARS Temperature Measurements and Heat Flux Measurements

2000-10-16
2000-01-2831
It is generally accepted that knocking combustion influences the heat transfer in SI engines. However, the effects of heat transfer on the onset of knock is still not clear due to lack of experimental data of the thermal boundary layer close to the combustion chamber wall. This paper presents measurements of the temperature in the thermal boundary layer under knocking and non-knocking conditions. The temperature was measured using dual-broadband rotational Coherent anti-Stokes Raman Spectroscopy (CARS). Simultaneous time-resolved measurements of the cylinder pressure, at three different locations, and the heat flux to the wall were carried out. Optical access to the region near the combustion chamber wall was achieved by using a horseshoe-shaped combustion chamber with windows installed in the rectangular part of the chamber. This arrangement made CARS temperature measurements close to the wall possible and results are presented in the range 0.1-5 mm from the wall.
Journal Article

Effects of Nozzle Geometry on the Characteristics of an Evaporating Diesel Spray

2016-10-17
2016-01-2197
The effects of nozzle geometry on diesel spray characteristics were studied in a spray chamber under evaporating conditions using three single-hole nozzles, one cylindrical and two convergent, designated N1 (outlet diameter 140 μm, k-factor 0), N2 (outlet diameter 140 μm, k-factor 2) and N3 (outlet diameter 136 μm, k-factor 2). Spray experiments were performed with each nozzle at two constant gas densities (15 and 30 kg/m3) and an ambient temperature (673 K) at which evaporation occurs, with injection pressures ranging from 800 to 1600 bar. A light absorption and scattering method using visible and UV light was implemented, and shadow images of liquid and vapor phase fuel were recorded with high-speed video cameras. The cylindrical nozzle N1 yielded larger local vapor cone angles than the convergent nozzles N2 and N3 at both gas densities, and the difference became larger as the injection pressure increased.
Journal Article

CFD-Based Optimization of a Diesel-fueled Free Piston Engine Prototype for Conventional and HCCI Combustion

2008-10-06
2008-01-2423
This paper presents results of a parametric CFD modeling study of a prototype Free Piston Engine (FPE), designed for application in a series hybrid electric vehicle. Since the piston motion is governed by Newton's second law, accounting for the forces acting on the piston/translator, i.e. friction forces, electrical forces, and in-cylinder gas forces, having a high-level control system is vital. The control system changes the electrical force applied during the stroke, thus obtaining the desired compression ratio. Identical control algorithms were implemented in a MATLAB/SIMULINK model to those applied in the prototype engine. The ignition delay and heat release data used in the MATLAB/SIMULINK model are predicted by the KIVA-3V CFD code which incorporates detailed chemical kinetics (305 reactions among 70 species).
Journal Article

Multi-hole Injectors for DISI Engines: Nozzle Hole Configuration Influence on Spray Formation

2008-04-14
2008-01-0136
High-pressure multi-hole injectors are one candidate injector type for closed-spaced direct injection (DI) gasoline engines. In such a system, the spark plug must be located close to the spray and, during stratified operation, the spray is ignited very soon after the fuel droplets have been vaporized. Thus there are very high demands on the sprays used in such a system. An additional challenge is the positioning of the spark plug relative to the spray; both consistent ignitability and the absence of liquid fuel droplets must be achieved. Many injector parameters influence spray formation; for example, hole diameter, length to hole diameter ratio, nozzle hole configuration etc. This paper investigates the spray formation and spray induced air movement associated with rotational symmetrical and asymmetrical nozzle hole configurations.
Technical Paper

Analysis of a Turbocharged Single-Cylinder Two-Stroke SI Engine Concept

2021-04-06
2021-01-0642
Power dense internal combustion engines (ICEs) are interesting candidates for onboard charging devices in different electric powertrain applications where the weight, volume and price of the energy storage components are critical. Single-cylinder naturally aspirated two-stroke spark-ignited (SI) engines are very small and power dense compared to four-stroke SI engines and the installation volume from a single cylinder two-stroke engine can become very interesting in some concepts. During charged conditions, four-stroke engines become more powerful than naturally aspirated two-stroke engines. The performance level of a two-stroke SI engines with a charging system is less well understood since only a limited number of articles have so far been published. However, if charging can be successfully applied to a two-stroke engine, it can become very power dense.
Technical Paper

Characterization of Gaseous and Particle Emissions of a Direct Injection Hydrogen Engine at Various Operating Conditions

2023-09-29
2023-32-0042
This paper investigates the gaseous and particulate emissions of a hydrogen powered direct injection spark ignition engine. Experiments were performed over different engine speeds and loads and with varying air- fuel ratio, start of injection and intake manifold pressure. An IAG FTIR system was used to detect and measure a variety of gaseous emissions, which include standard emissions such as NOX and unburned hydrocarbons as well as some non-standard emissions such as formaldehyde, formic acid, and ammonia. The particle number concentration and size distribution were measured using a DMS 500 fast particle analyzer from Cambustion. Particle composition was investigated using ICP analysis as well as a Sunset OC/EC analyzer to determine the soot content and the presence of any unburned engine oil. The results show that NOX emissions range between 0.1 g/kWh for a λ of 2.5 and 10 g/kWh λ of 1.5.
Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
X